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ABSTRACT

An exact solution is obtained for the scattering of an arbitrary scalar
wave from a rough surface in terms of a series of functions, by means of
a complete set of functions orthogonal over the illuminated area. The
method used is that of undetermined coefficients and is adopted here to

the solution of either the Neumann problem or the Dirichlet problem.




Introduction

1954; Feinstein, 1952; Hoffman, 1955, eic.] of a solution to the wave
equation and the method of small perturbation [_Al‘ pert et al, 1953;
Katsenelenbaum, 1955; Miles, 1953; Parker, 1956; Lysanov, 1955, c:'cc'._;1
have been the two main approaches to solving the scattering problem.
Other methods that rely on a single principle such as the geometric optics
[Muhleman, 1964: Mitzner, 19643, the image method [Twersky, 1950,
1951, 1953 the principle of reciprocity Ament, 1960] , the method of
matching fields [Deringen, 1954 ], the brilliant point method [Du Castel
and Spizzichino, 195 9] etc., are either resiricted to rather special
problems for a practical solution or limited in applicability by the principle
itself. The only general and exact approach then is the Huygens formu-
lation. However, the requirement of the boundary conditions leads to an
integral equation which in general cannot be readily solved in a closed
form. Thus, various approximations [Lysanov, 1956; Meecham, 1956]
have been made in order to affect a solution. To the author's knowledge
no exact solution has been obtained for the said integral equation for

the case of a rough surface boundary, although the same boundary condi-
tion formulated in terms of a continuous spectrum of plane waves has been
solved by Marsh [1961] . In what follows, we shall present an exact
solution in series form to the integral equation and conse uently the scat-

tering problem.
The Scattered Field

Through the use of Huygen's Principle and Green's second theorem,
the total field at a point, P ,.in the space above the rough surface due to
an incident field ®; can be shown to be [Bergman and Schiffer, p. 258,
1953 ]
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where GCP,S‘) = & /.Q is the free space Green's function.
U (8") and CP(P) are the wave potential functions on the surface and at
the point P in space respectively. n' is the local unit normal on §'. Feor

a free surface, (1) reduces on the surface to
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where S represents the observation point on the scattering surface ( & 1
E 9 '3 3) and S' the source point on the scattering surface. Let the mean
surface fit into a constant surface of some orthogonal coordinate system.

Then dS' can be written as
2 I 2 Va.
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where the hi's are the scale factors. Hence (2) can be written as
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Let g n(%;, %, )be a complete set of normahzed functions orthogonal

on S'. Then the following expansions are possible

G(s,s!) = Zﬂ, b, (5, g,) jn(g,)) €')

(5a)
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By substituting (5) into (4) and integrating over S' the following expression
is obtained
(E, %,)
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The problem now is to determine Cn's. If b, (5 ,Z, ) is an ortho-

gonal set of functions, the Cn's can be easily found by quadratures. If
not, let U be the orthogonal set of functions constructed from the set b
by the Gram—Schrmdt procedure [Conrant and Hilbert, vol Ij Then 45 CS)

can be expressed in terms of Uq. Thus,
c’
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where K. , are coefficients obtained from the Gram-Schmidt procedure.
Hence, Ci.= 47 Z a[ﬁ' o(‘, . Theoretically, the problem is solved,

but for numerical calcufatlon an expression for 0('%,, is needed. This ex~-

pression is given in the appendix.

Conclusions

From the method of approach, it is clear that this method works for
the Neumann problem also. It has the advantage of being the most direct
and straightforward as an exact method and simpler conceptually and in its
final form than Marsh's method. The usefulness of exact methods, of
course, is that it works where approximate methods fail and it serves to
check the validity of such methods.




Appendix

To find an expression for the «(_, L, observe that for p < g
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where 6{.1‘, -‘—‘f[ t)f Ln “67102 ‘bg ‘ffz. |

For p= ¢, denote the sum, Z:;Ongn An%. by Nq.

Consider now the determinants, Dc

D, = Ibtc!
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It is known that a determinant can be expressed in terms of its

minors, M i.e.
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ortional to the
f bn in the ex-

pression for Un is supposed to be unity, we set

OC%;_Q = I"’(n% / /V{%z, (A-4)

Thus, an explicit expression for Uq in terms of the bn's is also
obtained

Mne
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